“Corals kick out housemates that can’t stand the heat”

New Scientist, 19th March 2008

When the going gets hot, corals can kick out heat-sensitive strains of symbiotic algae and take on a type that can withstand higher temperatures. This could mean certain reefs will be less susceptible to global warming than had been thought.

Like most other hard coral species, Acropora millepora, which is common in the Indo-Pacific region, relies primarily on microscopic algae for its nutrient supply. During sustained periods of high temperatures, heat stress causes the algae – which live within the coral – to pump out oxygen free radicals, which damage coral tissue. The coral is then forced to eject the algae – a phenomenon known as bleaching. It’s a lose-lose situation: the algae loses its home, and the coral its food supply. In some cases, it can lead to the coral starving to death.

Alison Jones of the Australian Institute of Marine Science, Townsville, and colleagues studied A. millepora living off Miall Island, part of the Keppel Island group in the southern inshore Great Barrier Reef, before and after a mass bleaching event in early 2006.

Heatwave effect

During this event, sea temperatures around Miall reef hit 30.2 °C for 30 days. This compares with an average for the season of 27.1 °C. Corals in this region start to show signs of heat stress when sea temperatures stay above 28.5 °C for more than 25 days, or above 29.5 deg C for longer than five days.

When the team sampled the coral colonies in 2003, they found that 93.5 % harboured mostly type C2 algae, which is relatively heat-sensitive. The remainder was formed of type D algae, which is heat-tolerant. After sweltering in the heat of 2006, 37 % of these colonies had died. By contrast, only 8 % of the colonies that had harboured mostly type D had died.

In follow-up work three months after the bleaching event, the team also found that nearly three-quarters of the colonies that had survived and that had originally harboured mostly C2 had switched to contain mostly type D – making them less susceptible to a bleaching event in future. These surviving colonies had initially had low background levels of D.

“This is great news,” says team member Ken Berkelmans. “It seems coral communities are probably far more adaptable to changing conditions than we’ve previously given them credit for.”

Short-lived adaptation

However, these findings so far relate to only one species in one location. And six months after the mass bleaching, the colonies did show some drift back towards C2, which allows them to grow faster than D.

Ove Hoegh-Guldberg, a leading coral biologist at the University of Queensland, Brisbane, says the findings are very interesting, in that they demonstrate a way in which corals can acclimatise to warmer temperatures – to an extent. However, he is cautious about what the results might mean in the long run, as type D provides the coral with only about an extra 1 to 1.5 °C of heat tolerance.

“After changing to D, corals don’t really have any other options – and the benefits of D will eventually be overwhelmed by climate warming,” he says.

Shifting Baselines, Local Impacts, and Global Change on Coral Reefs – a note from Nancy Knowlton & Jeremy B. C. Jackson

Healthy Reefs, Dying Reefs, and Corals in Bocas del Toro, Panama:(A) Example of a healthy reef with abundant living coral. (B) Example of a reef in which most coral has died and been replaced by macroalgae. (C) Bleached and healthy coral colonies; both are alive but the bleached colony has lost its symbiotic algae. (D) Coral suffering from disease and with encroaching macroalgae.

PLoS ONE, February 26th 2008

Nancy Knowlton & Jeremy B. C. Jackson

Imagine trying to understand the ecology of tropical rainforests by studying environmental changes and interactions among the surviving plants and animals on a vast cattle ranch in the center of a deforested Amazon, without any basic data on how the forest worked before it was cleared and burned. The soil would be baked dry or eroded away and the amount of rainfall would be greatly decreased. Most of the fantastic biodiversity would be gone. The trees would be replaced by grasses or soybeans, the major grazers would be leaf-cutter ants and cattle, and the major predators would be insects, rodents, and hawks. Ecologists could do experiments on the importance of cattle for the maintenance of plant species diversity, but the results would be meaningless for understanding the rainforest that used to be or how to restore it in the future.

Fortunately, ecologists began to carefully describe tropical forests more than a century ago, and vast areas of largely intact forests have persisted until today, so there are meaningful baselines for comparison. Networks of 50-hectare plots are monitored around the world [1], and decades of experiments have helped to elucidate ecological mechanisms in these relatively pristine forests [2]. But the situation is very different for the oceans, because degradation of entire ecosystems has been more pervasive than on land [3] and underwater observations began much more recently. Monitoring of benthic ecosystems is commonly limited to small intertidal quadrats, and there is nothing like the high-resolution global monitoring network for tropical forests for any ocean ecosystem.

This lack of a baseline for pristine marine ecosystems is particularly acute for coral reefs, the so-called rainforests of the sea, which are the most diverse marine ecosystems and among the most threatened [4–8]. Most of the world’s tropical coastal oceans are so heavily degraded locally that “pristine” reefs are essentially gone, even if one ignores changes associated with already rising temperatures and acidity [3]. Most modern (post-SCUBA) ecological studies have focused on reef ecosystems that are moderately to severely degraded, and we have a much better understanding of transitions between human-dominated and collapsed reefs than between human-dominated and quasi-pristine reefs. Even the classic studies of Caribbean reefs that began in the 1950s were based on reefs that had very high coral cover but were severely overfished, and the first systematic surveys of subtidal Australian reefs in the late 1960s began after a severe outbreak of the crown-of-thorns starfish Acanthaster planci had devastated coral populations along much of the Great Barrier Reef. We are thus left without a clear understanding of how reefs functioned in the absence of major human impacts.

Continue reading

Are the impacts of climate change on coral reefs exaggerated? Questions and Answers (Part 1)

For a long time the New Scientist has waged an ongoing battle with the climate change “skeptics”, and have produced some thorough articles such as “Climate change: a guide for the perplexed“, a round-up of the 26 most common climate myths and misconceptions. Time and time again I see people use similar myths and misconceptions regarding corals and coral reefs that are used as an argument as to why global warming is clearly a hoax, how warm water is good for corals (and the list goes on). In response to recent debates, below is the first part of a series called “Are the impacts of climate change on coral reefs exaggerated? Questions and Answers” in which I hope to address these misconceptions following the scientific evidence. Over the coming weeks I will aim to add more in the series: please feel free to add or ask any further questions in the comments below or email me at climateshifts @ gmail.com


1. “Warm water is good for corals”

Corals are locally adapted to the water temperature that they live in. This has taken many hundreds if not thousands of years to occur. It does not happen over decades, which would be the requirement if corals were to tolerate and survive the very rapid changes in sea temperature that we are currently facing.

The statements that “corals calcify faster in warmer waters” and “hotspots of coral diversity are found in warm waters close to the equator” are indeed true, but these conditions are only good for those corals that have adapted to these warmer conditions. For example, if you take corals from the southern end of the Great Barrier Reef and put them at the northern end of the Great Barrier Reef, these corals will suffer from being exposed to warmer than normal conditions and will die.

Although corals thrive within the upper limits of their thermal tolerance (within 1-2ºC), coral bleaching occurs when this tolerance is exceeded, resulting in loss of photosynthetic function, expulsion of symbiotic algae, and ultimately death of the coral. Clearly warm water is beneficial to those corals that are adapted to these warmer temperatures, although exceeding these thresholds results in mortality – a precarious balance.

With respect to the statement “corals in Moreton Bay are regularly stressed as the water is too cold” – it is well-known that corals in Moreton Bay (and other high latitude regions) where conditions that drop below 18°C in the winter lead to coral death. Just like they are sensitive to being too hot, they are also sensitive to becoming too cold. This is called the physiological range or tolerance of species. Conditions at places like Moreton Bay are marginal and therefore an outlier in global coral reefs and are restricted by their latitudes by cold winters.

Continue reading

Status of Caribbean coral reefs after bleaching and hurricanes in 2005

The “Status of Caribbean coral reefs after bleaching and hurricanes in 2005” is an excellent account of the impact of mass bleaching and hurricanes that hit the Caribbean in 2005. As you will remember, sea temperatures rose sharply in this region in May 2005, intensifying until October by which time hotspots covered most countries in the eastern Caribbean.  This occurred during the hottest year on record for the northern hemisphere at that time, and resulted in a massive die off of corals.

As pointed out by the editors, Clive Wilkinson and David Souter, the 2005 event provided an important opportunity to study the impact of extreme thermal stress on coral reefs.  Via network of hundreds of scientists that were linked by the Internet and backed up by sophisticated monitoring tools, key information and insights would gained into the relationship between thermal stress, bleaching and coral mortality.

Overall, coral reefs in eastern Caribbean were severely damaged by anyone’s estimate in 2005.  What is perhaps most alarming is that the mortality ranged up to 50% in places like the US Virgin Islands and the Greater and Lesser Antilles.  This came on top off a rapid deterioration of reefs that has been occurring over the past few decades.  The coral cover of most (if not all) coral reefs in this region have been sliding rapidly downwards.

This is a useful collection of papers which I recommend that you read (link).  My good friend Billy Causey, who has a long and proud history of fighting for the protection of Florida’s coral reefs, provides a very useful account of the history of bleaching in his region. There is also some useful information as well on the hurricane story, including on what drives their intensity and how they impacted reefs in 2005.

More disinformation from Dr Peter Ridd in response to the ocean thermostat study

I see over on “The Politics and Environment Blog” in response to the ocean thermostat study published recently that the following comment from the ill-informed Dr Peter Ridd’s diatribe “The Great Great Barrier Reef Swindle” is again being misconstrued as evidence that warmer waters will be beneficial for corals:

“The scientific evidence about the effect of rising water temperatures on corals is very encouraging. In the GBR, growth rates of corals have been shown to be increasing over the last 100 years, at a time when water temperatures have risen. This is not surprising as the highest growth rates for corals are found in warmer waters. Further, all the species of corals we have in the GBR are also found in the islands, such as PNG, to our north where the water temperatures are considerably hotter than in the GBR. Despite the bleaching events of 1998 and 2002, most of the corals of the GBR did not bleach and of those that did, most have fully recovered.

Of course, some corals on the Queensland coast are regularly stressed from heat, viz. the remarkable corals of Moreton Bay near Brisbane which are stressed by lack of heat in winter. A couple of degrees of global warming would make them grow much better.”

See my response to Dr Ridd’s comments here. I’d like to extend an open invitation to Dr Jennifer Marohasy, the blog’s main author (or anyone else) to provide evidence from the scientific literature that warmer waters will be holistically beneficial to corals from the Great Barrier Reef, and look forward to your response.

Flood waters on the Great Barrier Reef – a report from the Keppels

On the topic of Great Barrier Reef flood waters posted last week, a rapid response team from my lab, headed by Dr Guillermo Diaz-Pullido and backed by the remote sensing capabilities of Dr Scarla Weeks was busy conducting coral and algal surveys in the Keppels region to determine baselines of coral health before the flood waters hit the reef. Dr Diaz-Pullido and two volunteers (Pim Bongaerts and Norbert Englebert) joined researchers from JCU to determine levels of coral and algae at reefs across the region. Flying out from Rockhampton over the ever rising flood waters confirmed the MODIS satellite images (see bottom left), and shows the level of water damage to the region (see centre): the waters were clearly heading outwards of the reef forming a freshwater lens (see bottom right picture).

Satellite image showing the Fitzroy river (Jan 21st 2008) View of the Fitzroy River in full flood (22nd Jan 2008) Flood plume extending out to the inshore reefs (22nd Jan 2008)

 

As a bit of background to this region: the Fitzroy catchment at nearly 150,000km2 is the largest of the Great Barier Reef, and is dominated by agriculture (grazing, irrigated cotton and horticulture) and by mining (coal production of 100 million tonnes/year, magnesite and nickel), and significant flooding events have been recorded in 1918, 1954, 1978, 1983, 1988 and 1991 (see below from the Bureau of Meterology). The ABC News site has some astounding images from the 2008 flood here.

 

Following the high levels of rainfall in January this year, many have predicted significant flooding and impacts to the inshore coral reefs of the Keppel region. Such disturbances are far from unusual in the Keppels – in 1991, over 85% of coral in shallow reefs died following severe flood events, and again on November 2006, significant mortality occured within 8 hours on the reef flats in the Keppels due to a lethal combination of high rainfall and low tides.

The team surveyed shallow and deep reefs of five islands using belt transects, including more than 300 1×1 m photo quadrats. At the time of the surveys, the freshwater plume from the Fitzroy River had already reached the leeward side of some islands, although at the time of surveying Dr Diaz-Pullido reported no visible impacts on the coral reef benthic community. Benthic macroalgae (seaweeds) usually colonise weakened and dead corals, and during the last coral beaching event in 2006, seaweeds experienced an unprecedented macroalgal bloom. Despite the severity of these disturbances and algal blooms, many coral reefs of the area have recovered and currently flourish (see images below)

 

Dr Guillermo Diaz Pullido surveying coral and algal cover prior to the flooding Research assistants Pim Bongaerts and Norbert Englebert collect algal samples Healthy inshore reefs at the Keppels with high coral cover (Acropora sp.

 

The impacts on the reef communities will depend on the residence time of the freshwater plume on the area, the nature and quantity of the sediments and contaminant associated. The team are closely monitoring the oceanographic and meteorological patterns, and depending on the developments of the plume, the research team will head back to the Keppel Islands in the coming weeks. The offshore surface flow in the region is strongly influenced by wind direction, whilst surface flow is primarily offshore (cross-shelf) limited in offshore extent by the frontal boundary created by inflow of oceanic waters due to eddy dynamics further south. Therefore, the Fitzroy outflow will be deflected to the left due to geostrophy (due to rotation of the Earth ) moving along this front.

Coral Reefs May Be Protected By Natural Ocean Thermostat

Science Daily, Feb 8th 2008

Natural processes may prevent oceans from warming beyond a certain point, helping protect some coral reefs from the impacts of climate change, new research finds. The study, by scientists at the National Center for Atmospheric Research (NCAR) and Australian Institute of Marine Science (AIMS), finds evidence that an ocean “thermostat” appears to be helping to regulate sea-surface temperatures in a biologically diverse region of the western Pacific.

The research team, led by NCAR scientist Joan Kleypas, looked at the Western Pacific Warm Pool, a region northeast of Australia where naturally warm sea-surface temperatures have risen little in recent decades. As a result, the reefs in that region appear to have suffered relatively few episodes of coral bleaching, a phenomenon that has damaged reefs in other areas where temperature increases have been more pronounced.

The study lends support to a much-debated theory that a natural ocean thermostat prevents sea-surface temperatures from exceeding about 88 degrees Fahrenheit (31 degrees Celsius) in open oceans. If so, this thermostat would protect reefs that have evolved in naturally warm waters that will not warm much further, as opposed to reefs that live in slightly cooler waters that face more significant warming.

“Global warming is damaging many corals, but it appears to be bypassing certain reefs that support some of the greatest diversity of life on the planet,” Kleypas says. “In essence, reefs that are already in hot water may be more protected from warming than reefs that are not. This is some rare hopeful news for these important ecosystems.”

Continue reading

More on sunscreen and coral bleaching

Here is an excerpt from a recent news article (click below for full story):

Sunscreen may be killing corals

Cosmos, Monday 4th October

Some experts are yet to be persuaded by the findings, however.

“Any contaminant can experimentally damage a coral under artificially high concentrations. The amount [in the wild] must be tiny due to dilution,” commented Terry Hughes, director of the Australian Research Council’s Centre of Excellence for Coral Reef Studies at James Cook University in Queensland.

“Imagine how much water a tourist wearing one teaspoon of sunscreen swims through in an hour-long snorkel. Compared to real threats like global warming, runoff and overfishing, any impact of sunscreen is unproven and undoubtedly trivial,” he said.

However, Pusceddu argued that the coral response to sunscreen exposure was not dose dependent, “The mechanism appears to be on-off: thus once the virus has been switched on by [the chemicals in] sunscreen, toxicity is irrelevant.”

Ove Hoegh-Guldberg, director of marine studies at the University of Queensland in Brisbane, said the study is interesting, but notes that many factors are likely to be responsible. “Bleaching is like a runny nose: there are lots of things that could cause it.”

Though sunscreens may contribute to coral death, virus-caused bleaching is only a small part of the big picture, he said: “Climate related bleaching is a direct consequence of heat stress and does not involve viruses or bacteria.”

Coral reefs and climate change

A colleague of mine, Dr John Bruno forwarded me an excellent article that he wrote for The Encyclopedia of the Earth, titled “Coral Reefs and Climate Change

“A healthy reef ecosystem literally buzzes with sounds, activity and colors and is populated by incredibly dense aggregations of fish and invertebrates. In this respect, tropical reefs are more reminiscent of the African Serengeti than of the tropical rainforest they are often compared to, where the resident birds and mammals can be secretive and difficult to see. A coral reef can contain tens of thousands of species and some of the world’s most dense and diverse communities of vertebrate animals. Unfortunately, very few remaining coral reefs resemble this pristine condition; on most, corals and fishes are much less abundant than they were only a few decades ago”

John’s expert write-up and summary of threats to coral reefs related to climate change (coral bleaching, disease, ocean acidification) provides an excellent background of the literature and current threats, and is a worthy read for scientists, managers and the general public alike.

Healthy Great Barrier Reef reefscape A recovering Jamaican coral reef Bleached corals off Puerto Rico in 2005

 

2005 a deadly year for Caribbean coral

Following close on the heels of IUCN report …

PARIS (AFP, Jan 28 2008) — The Caribbean’s fragile coral reefs were devastated in 2005 by a doubly whammy of record-high temperatures and 13 full-on hurricanes, according to a UN-sponsored report released Monday.During the last 50 years many Caribbean reefs have lost up to 80 percent of their coralacp-palmata.jpg cover, damaging or destroying the main source of livelihood for hundreds of thousands of people, said the report, prepared by a team of scientists and experts at the Global Coral Reef Monitoring Network.

The study was jointly sponsored by UNESCO and the Intergovernmental Oceanographic Commission.

Coral-based ecosystems are extremely sensitive to temperature increases, which have led over the last 50 years to massive bleaching — affecting up to 95 percent of the reefs around some islands, including the Cayman Islands, Jamaica, Cuba, and the French West Indies.

2005 was the warmest year since records were first kept in 1880, and global warming is likely to increase in years to come, climate scientists have warned.

Continue reading